Which Version Should be Released to App Store?

Maleknaz Nayebi, Homayoon Farrahi, Guenther Ruhe
SEDS Laboratory
University of Calgary
Calgary, Canada
Email: {mnayebi, homayoon.farrahi, ruhe} @ucalgary.ca

Abstract—Background: Several mobile app releases do not find
their way to the end users. Our analysis of 11,514 releases
across 917 open source mobile apps revealed that 44.3% of
releases created in GitHub never shipped to the app store
(market). Aims: We introduce ‘“marketability” of open source
mobile apps as a new release decision problem. Considering
app stores as a complex system with unknown treatments,
we evaluate performance of predictive models and analogical
reasoning for marketability decisions. Method: We performed a
survey with 22 release engineers to identify the importance of
marketability release decision. We compared different classifiers
to predict release marketability. For guiding the transition of not
successfully marketable releases into successful ones, we used
analogical reasoning. We evaluated our results both internally
(over time) and externally (by developers). Results: Random
forest classification performed best with F1 score of 78%.
Analyzing 58 releases over time showed that, for 81% of them,
analogical reasoning could correctly identify changes in the
majority of release attributes. A survey with seven developers
showed the usefulness of our method for supporting real world
decisions. Conclusions: Marketability decisions of mobile apps
can be supported by using predictive analytics and by considering
and adopting similar experience from the past.

Keywords-Release management; Mobile apps; Empirical study;
Marketability; Analogical reasoning; Survey

I. INTRODUCTION

Market and user characteristics of mobile apps make their
release management different from proprietary software prod-
ucts and web services. By focusing on mobile apps, we
introduce the notion of release marketability. “Marketability”
is part of release management for platform-mediated soft-
ware products [2]. Developers release a version of the app
on a platform which was also known as the app store or
marketplace. Users can download the app from the platform
instead of getting it directly from the software owner as it is
done traditionally. We illustrated this fundamental difference
in offering software app products in Figure 1.

While an increasing number of software products are de-
signed and developed for platform-mediated environments,
in this paper we only study releases of open source mobile
apps. In our former study [10] we found that a substantial
number of releases never reach end users through the app
store. A marketed release is a release that was introduced in
a Git repository as well as in the app store. However, a not
marketed release is a release that was only introduced in the
Git repository of the app [10]. “Marketability” refers to the
question if a new release should becomes marketed or not.

Based on our former studies [9], [10], we characterize a
release with a set of code, release timing, and market attributes
and predict release marketability. Once we find that a release
is not marketable, we perform analogical reasoning to retrieve
similar not successfully marketable releases in the past. We
observe how the attributes changed while a release transitioned
into a successfully marketable release. Following the idea
of case-based reasoning [15], these analogical changes give
approximation of effort, nature of changes, and code quality
needed to be achieved for a release transition. Offering these
analogical changes is not meant to be prescriptive and should
be adopted and revised considering the context of the app.
However, as a form of software engineering knowledge man-
agement [13] this is supposed to support developers’ decision-
making. This paper has four main contributions:

First, we introduced and confirmed the importance of mar-
ketability decision for mobile apps which has not been
investigated so far.

Second, we compared three machine learning methods to
predict release marketability.

Third, to transition a not marketable release into a success-
fully marketable one, we performed analogical reasoning
using the experience of the same app and looking across
apps.

Fourth, we evaluated results of analogical reasoning with
actual changes that transitioned an under question re-
leases (internal validation over time). We also performed
a survey with app developers for external validation.

The research conducted in this paper is motivated by a

Release Release Download
e e "
AN i
1
Developer PR Users
User !Qc\dback, competitors’ statis Revié“:,_lie;te
(a)
o)
)
Developer Users

Fig. 1. Distribution of a product release to the end user for (a) app versus
(b) non-app open source software products.

survey with 22 release experts discussed in the next section. In
Section III, we formulate the research questions. We provide
a motivating example in Section IV and describe our method-
ology (Section V). We outline the design of the empirical
evaluation in Section VI, followed by empirical results given
in Section VII. We discuss threats to validity (Section VIII),
report about the analysis of related work (Section IX), and
provide conclusions (Section X).

II. SIGNIFICANCE OF MOBILE APP MARKETABILITY
DECISIONS

From analyzing 917 F-Droid open source apps, we found
that 35.4% of 11,514 releases were never shipped to the app
store. In Figure 1 we visualized a simplified release process
for open source mobile apps in comparison to traditional open
source applications. Considering the process shown in Figure
1, a developer releases into a Git repository () in Figure 1(a)).
Once the release is in the Git repository, the decision (Figure
1 - @) to be made is if this release should be shipped to the
app store or not. While the release might not be shipped into
the app store @ in Figure 1 (a)), a user can still install the
app from its Git repository. This is different from the analysis
of release readiness [1], which is limited to the release on a
Git repository as it is shown in Figure 1 -(b). Marketability
is solely differing between releasing into a Git repository or
releasing into the end-user and app store.

We performed a study with participants of the 4*" Interna-
tional Workshop on Software Release Engineering (RELENG
2016) to evaluate the impact of “the market” on release
decisions for mobile apps. Participants self-evaluated their
level of expertise in release engineering practice, research
and release engineering of mobile apps on a 3-point scale
(one indicated the lowest and three indicated the highest
level of proficiency). The majority of the participants had
higher expertise in release engineering practice (with Average
2.1). Our participants had an average expertise of 1.8 in
release engineering research and 1.6 in release engineering of
mobile apps. To evaluate the importance of marketability, we

performed a comparative survey study between mobile apps
and non-mobile apps (desktop and web applications) using the
factors found by AlAlam et al. [1].

First, participants evaluated the importance of six attributes
on planning for mobile versus non-mobile releases. The box
plot distributions of the results are shown in Figure 2-(a). In
this figure, “1” shows the least and “5” shows the highest
perceived importance of a factor. The results indicate that
Customers’ expectations and Market and competitors are sig-
nificantly more important for mobile in comparison to non-
mobile apps (Mann-Whitney test p-value = 0.032 and 0.001).
Also, the results revealed that Implementing a new feature has
a higher importance in planning for a release of a mobile app
compared to other attributes (p-value= 0.002).

Second, the participants evaluated the importance of factors
for measuring the success of a release. Our results in Figure
2-(b) show that, customers’ feedback and sales status have sig-
nificantly higher importance for mobile apps in comparison to
the non-mobile applications. 20 out of 22 participants (90.9%)
believed that customer feedback has the highest importance
(= 5) for evaluating success and failure of mobile apps.

Third, we asked participants if they think market acceptance
is a more important criterion for releasing a mobile app version
than it is for other software products.

95.4% of participants (21 out of 22) believed that market
acceptance is more important for mobile apps than it is for
any other software product releases.

Fourth, we asked the survey participants about the perceived
reason for this difference by evaluating the importance of
three factors extracted by Nayebi et al. [7] on a five-point
scale (see Figure 2-(c)). On top of that, participants could
openly add factors. Survey participants ranked the importance
of customers’ feedback significantly higher than reluctancy
to update (p-value = 0.032) and stronger competition (p-
value=0.043). Three participants added below responses:

“Unlike desktop, mobile apps do not seamlessly update. So,
this missile some of the effects of public feedback.”

[Users’ expectations|| Market & compet. New feature Users’ feedback Team feedback
547 ' 5 i .
Lyj Reluctancy
0 4 - 0 4 B
g 4 ¥ Q g 4 to update
g 31 g 3 1
) 2
3 ~
0 27 + o 2] 0
2 2 8
£ 14 £ 1 . . . £ stronger
=) - . ;
[Quality Social occasions Schedule [Sales status Social-media é-uu competition |;
0 r I : 0 =
-5 ° s
0)
> 4 > 4]
) 1)
- 3 - 31 Customers’ _|
feedback
2 24
14 14 + T T T T T
Mobile Non- Mobile Non- Mobile Non- Mobile Non- Mobile Non- 1 2 3 4 5
app mobile app mobile app mobile app mobile app mobile .
Level of importance
Factors Factors
(a) (b) ()
Fig. 2. Results of survey with 22 release engineers (a) Importance of factors for release planning (b) factors for evaluating success and failure, and (c)

reasons of difference in release planning mobile apps versus traditional software.

“The market is more important for mobile apps as the path
between developer and user is much shorter.”

“There are more choices in mobile than in web.”

The importance of market and the high number of not
marketed releases which we observed in open source mobile
apps motivated us to investigate on methods for assisting
mobile app developers in their decision making. Based on the
results showed in Figure 2-(b)), we analyze users’ feedback
to classify releases into successful and non-successful ones.

A marketable release could be successful or not. “Mar-
ketable but unsuccessful” is the gray area of marketability
decision, saying that similar releases were delivered into the
market however they were not successful. In this paper, tran-
sitioning of a release refers to transitioning a not marketable
or marketable but unsuccessful release into a successfully
marketable release. We describe the related research questions
in the next subsection.

III. RESEARCH QUESTIONS

We investigate on three research questions. We compare
classifiers to evaluate if marketability is predictable (RQ1) and
if so, how can we use past experience to support marketability
decisions (RQ2). On top of that, we evaluate the usefulness
of this support for app developers (RQ3):

RQ1 - (predictability): Which classifier algorithm works bet-

ter for marketability prediction when comparing Decision
Tree, SVM, and Random Forest models?
Why and how: We study how accurately we can predict
marketability of a release by analyzing a set of release and
app attributes. By identifying a success criteria, we clas-
sify each incoming new release of a mobile app as being
exactly one of marketable and successful, marketable but
unsuccessful, or not marketable. We compare Decision
Tree, Random Forest and Support Vector Machine (SVM)
classifiers using two sets of attributes.

RQ2 - (internal validation): How useful is analogical reason-
ing in suggesting changes for transitioning a release?
Why and how: Learning from experience is an es-
tablished concept as a form of guidance for decision-
makers, not being anyhow prescriptive in its nature.
For an incoming new release, we find the most similar
releases from the same app and similar apps. Then, we
identify changes in release and code which resulted in
transitioning a not successful or not marketable release,
into a successfully marketable one. Having data over
time, we compare analogical changes with the actual
changes of a transitioned release.

RQ3 - (external validation): To what extend app developers
consider the analogical reasoning useful for making re-
lease marketability decisions?

Why and how: Besides the formal and internal validation
addressed in RQ2, we performed a survey with actual app
developers. This is a very first step in the challenging
domain of external validation and design of a decision

support tool.

IV. MOTIVATING EXAMPLE

We briefly illustrate the main idea of the paper by an
example. Through this example, we provide a sneak peek into
the prediction and recommendation methods and sample re-
sults. For the purpose of illustration, we selected BatteryXu
which is an app for battery management.

BatteryXu has seven releases between January
31512014 and October, 31%t,2016 as shown in Figure 3.
Among them, two releases are exclusively kept in the GitHub
repository (not on Google Play). Two of the marketed releases
were unsuccessful, meaning that they received reviews with
negative sentiments. Beginning of 2016, BatteryXu has a
Release @ in GitHub. Using release and app attributes (Table
I) to build a Random Forest classifier, with 78% precision we
predict that Release @ is not marketable and should not be
released into the app store (RQ1). Looking into the releases
later in 2016, we can observe this prediction was correct.

Once we anticipate that the release is not successfully
marketable, we retrieve experience to guide developers in
future release decisions. In RQ2, we search for changes that
in the past transitioned a similar not successfully marketed
release. Following case-based reasoning, by presenting ana-
logical changes to developers, they can adopt, revise, and reuse
them [12] to make the release marketable and successful. We
summarized the key steps for answering RQ2 in Figure 4.

First, we calculate the Euclidean distance of Release @
of BatteryXu from all the other not successfully marketed
releases from our sample data set which includes open source
mobile apps hosted on F-Droid and GitHub (see Figure 4-
(a)). We pick the three most similar releases to Release
@. As an instance, Release ® of BatteryBot was an
unsuccessfully marketed release that was similar to Release
@ of BatteryXu. As demonstrated in Figure 4-(b), for each
of these three releases we mine which changes were applied to
transition the release. These changes are measured as the A of
the 12 release attributes presented in Table I. To add context
and make other releases comparable to Release @ we move
from the absolute degree of change in each attribute to relative
changes using frequency based discretization. As a simple
example, closing six issues in a release of an app which usually
closes 20 issues per release is low. However, closing six issues
in a release of an app that usually closes two issues per release
is high. Hence, we map the degree of change (A) of each
attribute relative to the overall change of the attribute across
all releases of the app using frequency based discretization.
Release @® of BatteryBot was not marketed and was the

Not-markete [l

GltHub—.—.—H-.—.—.—’ @—E—®

time

Google Play —@——@——0-0—0—

Marketed time
successful

BatteryXu

Fig. 3. Marketed and not marketed release of a sample app “BatteryXu”.
The color of marketed releases show the success status inferred from review
sentiments.

Similar release
in BatteryXu

% P>

—

Frequency
H

Very higl

Frequency

Frequency

I
Very high

Very high

Churn # of closed issues # of contributors

Similar releases G 0-O t g . .
in similar apps El = g = £ !
A e g E: El Z w3 -
B\ = | 2 g 2 ./E - :
518 \E s 2 A T\D = Z
|~ = = = \> =

(a) Analyze similarity of Re-
lease4 with other not suc-
cessfully marketed releases
(i) within BatteryXu, and (ii)

across similar apps. tioned it

(b) Find changes in attributes of
each similar release that transi-

9 °

of corrective commits # of non-functional commits Release cycle time

(C) Discretizing relative changes in attributes of
similar releases for sample release f

Fig. 4. Main steps of retrieving past experience for transitioning Release 4 of BatteryXu.

most similar to Release @ of BatteryXu. As an instance,
we calculated the churn between each two consecutive releases
of BatteryBot. We calculated the twentieth percentiles
of churn for BatteryBot and observed that the churn of
Release @ is in the 40% percentile, thus considered as “low”
(see Figure 4-(b)).

As a result, we abstracted three analogical changes that are
potentially applicable for Release @ of Batteryxu. These
changes provided a successful transition of former releases
similar to Release @):

Analogical change 1: Low churn ;
medium # of corrective, very
high # of closed issues ;

low # of contributors ;
low # of non-
functional commits; within

a short release cycle .

Analogical change 2: Low churn ; low # of contributors ;
high # of perfective, medium # of corrective commits;
within very long release cycle.

Analogical change 3: Low churn ; very low # of contribu-
tors, high # of corrective, low # of non-functional
commits; high # of closed issues ; within
a short release cycle .

Analogical change 1 shows that Release @ of
BatteryBot transitioned into a successful release by
involving low churn, low # of contributors, and within short
release cycle (proxies for low effort). However, the changes
were focused on quality enhancement (nature of changes) as
medium # of corrective commits were involved and high # of
issues were closed (quality enhancement). These were done
along with few non-functional changes.

To internally validate the usefulness of analogical changes,
we compared them with the actual changes that transitioned
Release @ to successfully marked Release (6 later in 2016:
Actual change in BatteryXu: Low churn ;

low # of contributors ; medium # of corrective ,

low # of non-functional commits; high # of closed

issues ; within 'a short cycle .

The maximum # of valid changes (= 5) occurred in
Analogical change 1 which was retrieved from the release

most similar to Release @. The minimum # of valid changes
(= 3) occurred in Analogical change 2. Overall, two analogical
changes, Analogical change 1 and Analogical change 3, were
needed to cover all the valid changes.

V. METHODOLOGY

We discuss the process and different techniques used for
our empirical investigation. We used Python language and
Scikit-learn' package throughout the project to gather data,
and implement predictive models and perform analogical rea-
soning.

A. Marketability prediction (RQ1)

A considerable amount of releases fail to attract attention
and satisfaction of users. The initial survey in Section II
showed that “customers’ feedback” is significantly most im-
portant factor to assess success and failure of an app release.
In this paper, each release belongs to exactly one category of:
Marketable successful: The release is in a proper status to be

released on the app store and likely will be a successful
release (attracts positive reviews). This is a “yes” answer
to the question of marketability.

Marketable but unsuccessful: Similar releases were shipped
to the app store however they were unsuccessful. This is
a “maybe” answer to the question of marketability.

Not marketable: The release is not in a proper status to be
shipped to the app store. This is a “no” answer to the
question of marketability.

To define the success of an app, we relied on users’
review sentiments. Among different forms of user feedback
in app store, reviews appeared to be the most informative [6],
[8]. Each marketed release can be classified as being either
successful or unsuccessful:

Release is successful if the average sentiment of reviews
after a release and before the next consecutive marketed
release is positive;

Release is unsuccessful otherwise.

Following Smedt and Daelemans [16], a user’s sentiment in
a review could be positive or negative, measured as polarity

Uhttp://scikit-learn.org/

TABLE I
ACCURACY OF DIFFERENT MODELS FOR PREDICTING MARKETABILITY OF OPEN SOURCE APP RELEASES.

Release attributes
ID Attribute Definition
atty Churn Lines of code that changed (added or deleted) between two releases.
atta # of changed files Number of files that were changed between the former release and the current release.
atts # of contributors Number of people contributed to the current release.
atty Release cycle time The number of days between the former release and current release.
atts # of open issues Number of open issues at the time of release.
atte # of issues opened following a release Number of issues opened between the former release and the current release.
atty # of closed issues Number of issues closed between the former release and the current release.
attg - i correctwg, adaptive, perfectlve, implementation, Nature of changes categorized based on categories defined by Hindle et al. [4].
attio and non-functional commits
App attributes
atti3 # of app releases Number of marketed release of the app by the time of current release.
attia Release cycle variance Variance of marketed release cycle times by the time of current release.
attis Average sentiment average sentiment of all reviews across all releases at the time of the current release.

which is a number in the range [-1, 1]. For each marketed
release, we used average sentiment of all the reviews following
the release and before the next marketed release as the
success criteria. We analyzed sentiments’ polarity for app store
reviews using Python’s Pattern [16] module. We applied
and compared three different machine learning techniques to
classify a new release into one of these categories. To compare
the performance of three classifiers Decision Tree, Random
Forest, and Support Vector Machine (SVM), we used both
10-fold cross validation and Leave-One-Out (LOOCYV) cross-
validation. We used two sets of attributes (see Table I):

Release attributes: Code, time, and developer based at-
tributes to reflect status of a release.

App attributes: Release attributes of the app as well as
average users’ review sentiment across all the releases.

We selected release attributes using the results of our
former study [7] where we described the characteristics of
marketed and not marketed attributes. In that study, we
demonstrated the impact of the number and cycle time of
releases (When?), nature of changes (What?), reported issues
and change requests (why?), and extent and domain of changes
(Which?). We introduced all the release attributes in Table
I. Our previous study [10] showed significant differences
between marketed and not marketed releases concerning all
the 12 attributes listed in the table. Our initial study showed
that not marketed releases have a significantly greater change
velocity (att;, atty). However, marketed releases have a
higher speed in introducing and resolving issues (atts, attg,
attr). Our descriptive statistics showed a significant difference
between release cycle time for marketed versus not marketed
releases (time between each two consecutive releases). With
regards to nature of changes (attg to atti2), it became apparent
that not marketed releases have significantly higher number
of corrective and implementation commits, while marketed
releases put the focus on non-functional changes.

For predicting marketability of releases from Github, we
also used app attributes and selected them based on the
results of our former study [9]. Therein, we investigated which
attributes create better entropy between clusters of similar
mobile apps. These attributes are also introduced in Table I.

Without compromising on entropy we selected a minimum
number of possible attributes (three) for building our classifiers
[9]. We used average sentiment of the reviews over all releases
as the market and user attribute, for simplicity and consistency
throughout the paper.

B. Analogical reasoning to support marketability decisions
(RQ2)

In RQ1 we predicted marketability of mobile app releases.
In RQ2, we provide analogy-based support for transitioning
a not successfully marketable release into a successful one.
Analogical reasoning has been successfully used in different
fields of software engineering [15] and beyond [12]. Reuse
of software knowledge is known to be inherently difficult
because, in a strict sense, each software project is different
from other in details. However, reuse of experience is essential,
and it is intuitive to learn from experience. To assist decision
making about release marketability, we retrieve related experi-
ence. The input for RQ2 is a not successfully marketed release.
We illustrated the process of analogical reasoning in Figure 5
and describe the three steps below:

Step @:We find most similar releases to the incoming new
release within our knowledge base. The knowledge base
is the repository of not marketed releases that have been
successfully transitioned into a successfully marketed release.
We determine the Euclidean distance between the incoming
not marketable release r and all releases in the knowledge
base. We pick the m top releases with shortest distance to r.

Step @: For each of the m releases similar to r, we analyze
their transition into next successfully marketed release. The
aim is to guide the transition of 7 into a successfully marketed
release denoted as 7. We compute the changes in all the 12
release attributes (att; to atti2) for each pair of a similar
release r; and the transitioned r;' (7 = 1...m) release. More
formally, for an app a, the change Aatt;(a,r;) of a release
attribute ¢ is defined by Equation (1):

Aatt;(a,r;) = att;(a, Tj) — att;(a,rj)

for app a and release r for all similar releasesj = 1...m (1)

Knowledge New not successfully
base marketed release

T 7& 77777 i 7777777777777777 Analogy based reasoning

Find Aatt; of
each m release
from its next
successful release

Retrieve top m sim-
ilar not successfully
marketed releases

Map As into 5-
point Likert scale

—_

Fig. 5. The process of creating analogical changes for release transition.

Each value Aatt;(a,r) is the absolute value of attributes’

change when release r; transitioned to release rj.

Step @: To abstract from detailed numbers, we map the values
of Aatt;(a,r) into five-point scale using frequency based
discretization. We calculate the change of each attribute during
a transition (between the not successfully marketed release
under analysis and the first successfully marketed release after
that). We descritize Aatt;(a,r) considering the frequency
distribution of all the changes of att; in different releases of
app a. We calculate five percentiles (at 20", 40", 60", and
80%h levels) of att; across all releases of app a. This way, each
Aatt;(a,r) is mapped to exactly one category. We visualized
an instance of this process in Figure 4.

To evaluate the usefulness of analogical reasoning in this
context, we applied analogical reasoning for a release and
compared analogical changes with actual ones. To do so,
we used all the releases of F-droid apps before 2016 as our
knowledge-base. This represent 75% of our whole data set. We
demonstrated this process in Figure 6. First, we found releases
with a successful transition in 2016 for our evaluation purpose
(Step 1). For each release with a successful transition (Step
2), we applied the three steps of Figure 5 to extract analogical
changes. For each release in our test set we found the A of all
attributes between test release and its actual next successfully
marketed release (Step 3). Then we discretized and mapped
As (Step 4). Finally we compared the actual changes with
analogical changes of release attributes (Step 5).

To internally evaluate the usefulness of analogical reasoning
in this context (RQ2), we compared analogical changes with
the actual ones. We used four evaluation criteria:

Coverage: Number of valid attribute changes that were cov-
ered by at least one of the analogical cases.

Distribution: Minimum number of analogical cases needed
to cover most number of valid attribute changes.

Max # of valid changes: Maximum number of matches be-
tween actual and and analogical changes in a similar case.

Min # of valid changes: Minimum number of matches be-
tween actual and analogical changes in a similar case.

C. External validation of analogical reasoning (RQ3)

In RQ3, we performed a survey with mobile app developers
to understand usefulness and intuitiveness of the retrieved
analogical changes. We asked developers to define the extent

F-Droid
apps re-

g ; e =
o eases xtract not suc-
) E:flgfses « ™~ Releases| _,, | cessfully marketed
Z1 2016 in 2016 releases with suc-
e cessful transition, 1

1S€

nowlc

<
)

L

Select release
rfromappa | < Test set
I 2

Find
Aatt;(a,r)

i 3
Map A into
a category
,,,,,, [.

’

Actual
changes

\
| 8l

‘ Compare actual changes

with analogical changes 5

Fig. 6. The process of analogy based reasoning for transitioning a release
and evaluating its results (RQ2).

(on a 5-point scale with five being highest) they rely on their
own experience, versus the product team experience versus
experience from similar products for making marketability
decision.

We presented to them “app attributes”, a link to apps’
GitHub repository, and a link to apps’ Google Play page.
We showed the attributes of the release under analysis (att;
to attis) to the survey participants. We presented to them
transitions we have mined from similar releases in the past and
asked each participant, to classify and rank the usefulness of
analogical changes. Each participant could classify extracted
transition into useful (the retrieved transition is useful to
transition the release under question), maybe (the retrieved
transition may be helpful to transition the release under
question), and useless (the retrieved transition is not useful to
transition the release under question). Participants ranked the
transitions in a way that the first transition in class “useful” is
the most helpful and the top transition in the class “useless”
is the least useful transition.

VI. CASE STUDY DESIGN

In what follows we describe the design of our case study.

A. Mining open source apps from F-droid and GitHub

We gathered all the apps from the F-Droid repository of the
open source Android apps over a period of 12 months. By
monitoring and crawling over that period, we increased our
sample size from 1,273 apps at the start to the 1,844 apps as
of October 2016. Most of them (917 apps) were hosted on
GitHub. To get similar data attributes for all the apps (such as
release tags), we focused our analysis on the 917 open source
Android apps hosted on GitHub. For all 1,844 apps from F-
Droid, we parsed the HTML data from their respective F-Droid

page and gathered the apps’ package name, source control
repository, and issue tracker information. We filtered data so
that only apps hosted on GitHub open source repositories
remained. This process resulted in 917 open source Android
apps. We gathered data for each app using their GitHub URL
as stated in F-Droid. We analyzed GitHub log of each of these
apps to extract release attributes (see Table I).

B. Collecting data for marketed and not marketed releases

Using the package names obtained from F-Droid, we
retrieved the Google Play page of each app. We then
parsed the HTML data from Google Play (for reviews) and
Searchman.com (for release dates). Searchman.com is
a third party analytics platform which gathers data of Google
Play over time and hence, keeps all the release dates of an
app. We also gathered release identifier and dates from GitHub
repository of each app. While mapping releases between
GitHub and Google Play, four different cases occurred as
shown in Figure 7;

Type 1: The GitHub release date and identifier match the
Google Play release date and identifier. We call these
releases being both in Github and Google Play as “mar-
keted”

Type 2: The GitHub release identifier or release date is not
an exact match with the Google Play release. We man-
ually inspected several releases to find an approximation
schema for mapping two releases. We analyzed release
identifiers as well as date of release to map releases
between Github and Google Play.

Type 3: The GitHub release is not available in Google Play.
This means that neither the identifier nor the release date
approximately match with any release in the app store.
We call these releases “not marketed”.

Type 4: The Goole Play release is not available in the GitHub
repository of the app. These cases were rarely observed
(Iess than 1% of releases). Often, following this type
of releases, open source development on GitHub was
discontinued. We excluded these cases from our data.

The most challenging inconsistency was Type (2). In those
cases, we called two releases identical if they had a distance of
not more than five days in their release date. We considered
two release identifiers the same if one or both had “v” or
“version” in the beginning, or one or both had “.0” at the
end. For sub-string matching of release identifiers, we used
the regular expression “[0-9]+(\.[0-9]+)(\.[0-9]+)?”. As an
example, if “V 1.3.0” were released on March 17t" in GitHub
and release “Version 1.3” released on 18" in Google Play, we

:)) O
GitHub 9, 0, 0 time
Type : Type Type 3
1 2 N Type 4
Google Play @ L time

Fig. 7. Mapping GitHub releases to Google Play releases resulted in four
different types of transition.

considered these two versions the same and called this release
“marketed”.

As the result of this process, we gathered a pool of 11,514
releases over 917 apps. Among them, 7,435 releases were mar-
keted and 4,079 releases were not marketed. For identifying
success of a marketed release, we gathered users’ reviews
following each release of an app. We analyzed reviews’
sentiment [3], [8] by calculating polarity [16]. In total, we
analyzed 78,304 reviews. Among the 7,435 marketed releases,
we identified 3,734 releases as successful and 3,701 releases
as not.

C. Set-up of knowledge base and test set (RQ2)

For the purpose of evaluation in RQ2, we mined not
marketed or marketed-unsuccessful releases that transitioned
into at least one successfully marketed release. For establishing
our knowledge base, we limited our search into releases from
2016. The 917 open source mobile apps of our sample set
had 2,498 releases on GitHub between January 1%¢,2016 and
October 31%¢,2016. Among them, 58 releases across 52 apps
satisfied the conditions for this evaluation. For a subset of these
58 releases, we could also retrieve similar experience from the
same app. This means that for 19 releases of 19 apps, at least
one former instance of not successfully marketed releases with
a transition to successfully marketed release existed.

VII. RESULTS

In this section, we present the results of the three stated
RQ’s sequentially.

A. Evaluation of classifiers for marketability (RQ1)

We compared Decision Tree, Random Forest, and Support
Vector Machine classifiers for predicting marketability. We
trained these models first by considering release attributes and
second by considering app and release attributes jointly (see
Table I for the attributes). To reduce bias, we evaluated the
accuracy of the prediction models by both 10-fold and Leave-
One-Out cross-validation (LOOCYV).

As the result of data pre-processing in Section VI we ended

up with a dataset of 3,734 (32.4%) marketed successful, 3,701
(32.1%) market but unsuccessful, and 4,079 (35.4%) of not
marketed releases. We used this data set to build and evaluate
our prediction model for RQ1. The precision, recall, and F1
score of the three classifiers are shown in Table II. The results
of 10-fold cross-validations are the average values of 10 runs
of cross-validations. The performance of the three prediction
models on our data set is about the same. We used the
minimum number of attributes to build our model by excluding
correlated variables from our attribute set considering the
results of our former study [9].
Decision Tree: We did not weight the decision tree as our
sample had approximately the same size of labeled data in
each category. We used Gini index to decide on splits of the
tree and tuned the parameters to ensure that each leaf node in
the tree has the minimum of four samples and prevent over
fitting.

Random Forest: For this model, we limited the number of
features each tree can use at each split by using square root
and 20% threshold. This reduced the F1 score between 4% to
7% comparing to the models without feature restriction.

SVM: To tune parameters we performed an exhaustive search
over Kernel (function to transform data), Gamma and C'
values (for non-linear data transform) in a way to maximize
the score of the left out data. This tuning was done using
Scikit’s GridSearchCV package which optimizes param-
eters by cross-validated grid-search.

Random Forest had a slightly better F1 score. Besides, when
using app attributes in conjunction with release attributes, this
results in better recall with precision being about the same.

B. Internal validation of analogical reasoning results (RQ2)

To internally validate the usefulness of the analogical rea-
soning following the method described in Section V and
Figure 6 we compared the analogical changes with the actual
changes and applied the four criteria discussed in Section V-B.
For each release, we retrieved similar releases from the same
app (if available) and from five (m = 5) similar apps. We
used m = 5 as we observed most of our 58 releases have five
similar releases with normalized Euclidean distance < 0.25.
As we discussed in in Section VI-C, we evaluated cross-app
analogical reasoning on 58 releases and within app analogical
reasoning for 19 releases.

Figure 8 shows the evaluation results for 58 releases by
only looking into similar apps. Eight release attributes have
been changed in the majority of the transitioned releases.
The analogical reasoning could cover on average 70% of
actual changes, however, these were mostly distributed in
three separate pieces of retrieved experience. For 21.1% of
transitioned releases, we could correctly retrieve changes in
all attributes. For 44.8% of cases, we could correctly retrieve
above 90% of attribute changes. The minimum and a maxi-
mum amount of change show the most (median = 50%) and
least (median = 18%) attribute changes among five similar
cases for each of the 58 releases.

Table III presents the comparison between analogical
changes and actual changes, within and across apps. Only
for one release (R14), the within app analogy reasoning

TABLE II
ACCURACY OF DIFFERENT MACHINE LEARNING TECHNIQUES FOR
PREDICTING MARKETABILITY OF OPEN SOURCE APP RELEASES.

Classification | 1o ¢4 cross validation LOOCV
technique

Precision| Recall| Fl | Precision| Recall| FI1
Use release attributes only
Decision tree 0.75 0.74 0.74 0.81 0.80 0.81
Random 077 | 078 | 078 | 085 | 086 | 085
Forrest
SVM 0.68 0.66 0.66 0.83 0.80 0.81
Use app and release attributes
Decision tree 0.76 0.79 0.74 0.86 0.88 0.81
Random 078 | 079 | 078 | 083 | 089 | 085
Forrest
SVM 0.71 0.77 0.73 0.73 0.77 0.74

outperformed the cross app analysis. However, it appeared that
reasoning within and across apps are complementary. In the
majority of releases (63.1% of 19 releases), looking into the
within app reasoning increases the coverage of the cross app
analysis by 20% to 37.5%. In other words, we can correctly
infer changes in some attributes analyzing former releases of
the same app.

The results showed that analogical reasoning is useful for
guiding marketability decisions. However, the valid changes
are distributed across several analogical changes. This is
aligned with the general methodology, as in this context, there
is no expectation that experience could be reused without
adaptation by the domain expert.

C. External validation of analogical reasoning (RQ3)

We identified apps with frequent marketed and not marketed
releases in 2016 (more than 2 of each) and identified develop-
ers with a considerable number of commits (more than 5) from
each project and invited them to participate in our survey (16
developers in total). Seven developers from four different open
source apps participated in our survey for external evaluation
of analogical reasoning.

First, we asked the developers to what extent (on a five-point
Likert scale) they rely on their “own experience”, “status of
the apps’ former releases”, and “lessons learned from other
apps” to make release decisions. Only two developers rely on
their personal experience stronger than former experience and
lessons learned. Reuse of experience within app context were
slightly more important to developers comparing to cross-
app experience. it appears that reuse of former experience
is acceptable along with personal knowledge for surveyed
developers. The developers valued their own experience and
within- and across- app experiences all on average or above.

Second, for each of the 19 releases we discussed in Table
III, a developer defined if the retrieved case is useful, it might
be helpful or is useless. Overall, 121 analogical changes for
19 releases were evaluated by seven developers. Each release
was evaluated by one developer and no developer evaluated
analogical cases of more than four releases. The results
showed that 48.8% of all the retrieved cases were considered
as “useful” by developers, while 42.9% were considered as
“might be useful”, and 8.3% as “not useful”. Also, 84.2% of
the most similar cases to each of the 19 releases are “useful”
and the rest (three of them) were evaluated as “might be

100%

124 75%-

A

Distribution Total #
of changes

50%

Frequency
o]
Percentage

25%]

0% 1

Max.
changes

Min.

Coverage changes

Fig. 8. The distribution, min and max actions across 58 similar cases.

TABLE III
COMPARISON OF CROSS APP AND WITHIN APP EXPERIENCE FOR OPEN SOURCE MOBILE APPS.

Reasoning based on similar apps

Reasoning based on same app releases

ID | Coverage| Distribution # of Min. Valid | Max. valid # of Coverage| Distribution # of Min. Valid | Max. valid
changes changes changes cases changes| changes changes
R1 100% 3 8 12.50% 50% 2 100% 9 2 22.20% 33.30%
R2 100% 4 8 25.0% 50.0% 1 75.0% 4 1 75.0% 75.0%
R3 100% 5 11 18.2% 45.5% 1 55.6% 9 1 55.6% 55.6%
R4 100% 3 9 11.1% 55.6% 2 50.0% 4 1 50.0% 50.0%
RS 100% 3 15 26.7% 46.7% 1 41.7% 12 1 41.7% 41.7%
R6 100% 5 6 33.3% 50.0% 1 40.0% 5 1 40.0% 40.0%
R7 100% 2 5 40% 80% 1 25% 8 1 25% 25%
RS 92.80% 4 14 14.20% 64.20% 2 36.30% 11 1 9% 36.30%
R9 85.7% 3 5 20.0% 40.0% 1 57.1% 5 1 57.1% 57.1%
R10 | 85.7% 4 8 25.0% 62.5% 2 42.9% 7 1 42.9% 42.9%
R11 84.6% 5 15 13.3% 46.7% 1 53.8% 7 1 53.8% 53.8%
RI12 | 80.0% 3 14 21.4% 28.6% 1 40.0% 11 1 40.0% 40.0%
RI3 | 71.4% 2 7 28.6% 85.7% 1 57.1% 5 1 57.1% 57.1%
R14 | 62.5% 4 11 18.2% 27.3% 2 75.0% 14 2 14.3% 41.7%
R15 | 60.0% 4 7 14.3% 42.9% 1 40.0% 5 1 40.0% 40.0%
R16 | 42.9% 3 11 9.1% 27.3% 1 41.7% 12 1 16.7% 25.0%
R17 | 41.7% 3 6 16.7% 50.0% 1 33.3% 6 1 33.3% 33.3%
RI8 | 41.7% 4 12 16.7% 33.3% 2 23.1% 13 2 7.7% 16.7%
RI19 | 36.4% 4 13 9.1% 27.3% 2 25.0% 12 2 16.7% 16.7%

useful”. Developers ranked the retrieved experience based on
the usefulness. We compared developers’ ranking with the
ranking based on similarity between analogical releases and
the under question release. The positive 0.63 Spearman’s rank-
order correlation between these two showed that there is a
positive relation between releases’ similarity and usefulness
of them for developers.

Third, we asked developers if and to what extent they
would like to reuse experience from other apps to decide
on release marketability. Six of the seven developers stated
their definite willingness to know about similar cases while
making marketability decision. One developer were uncertain
about ease of using this information. Four of the developers
suggested more structure, context, visualization and a tool
support to make the results more usable:

“Availability of multiple choices is the best. But, looking into
the app repository with URL eats my time.”

“The choices are not extremely different. Visualizing them or
making them side by side or color them.”

“With a tool I will use it better. This was not easy to follow.”

[like more organization of info like differences, category,
why they are similar to my release, etc. Also, app store had
millions of apps not only five.”

VIII. THREATS TO VALIDITY

As of any emperical study, we need to consider several
threats to judge the validity of the results.

RQ1 - Prediction models for marketability: Parameter
tuning (e.g., the number of trees, the size of the trees) affect
the performance and accuracy of machine learning techniques.
The same applies to the definition of the training and test
sets as used in the experiment. We used exhaustive search for
tuning SVM in conjunction with extra benchmarking for other
two classifiers to tune parameters. While the variation of these

parameters and time component is of potential interest, the
detailed results of this type of analysis were not considered
essential for this study. We also evaluated the accuracy of
classifiers using ten times of 10-fold cross-validation as well as
Leave-One-Out technique. Mapping releases between GitHub
and Google Play for one of the four types (Type (2)) are
uncertain. We used manual inspection of multiple releases to
infer time and textual filters to mitigate the risk of mapping.
The same is true for analyzing the success of marketed releases
by analyzing the sentiment of reviews. Multiple factors in app
store could be used as a success factor. However, reviews have
been used more widely in former research.

RQ2- Usefulness of analogical reasoning: We validated
the results of analogical reasoning by comparing the changes
retrieved with actual changes over time to reflect how good
was our reasoning. The measures we used to evaluate the
conformance between former experience in the context of
a release and actual changes applied in the under question
release are proxy measures. We abstracted attribute changes
by mapping them into discretized categories. While this added
context to our reasoning, it might create construct validity in
the process. We also could evaluate 58 releases using cross-
app data and 19 releases using the same app information. We
used almost 4/5 of our data as the knowledge base and only
used data of 2016 for evaluation purposes. We can be sure that
the results of RQ2 reflect the performance of our reasoning in
most recent data. However, a more comprehensive evaluation
by changing the size of the knowledge base and test set might
give more insight. We also looked only into top 5 most similar
releases considering the distribution of Euclidean distance but
tuning this parameter for other contexts should be considered.

RQ3- Perceived usefulness of analogical reasoning by
developers: We evaluated the results of analogical reasoning
with relatively small number of developers. This is comparable
with similar studies evaluating the initial results [17]. We

interpret these finding as being initial, considering them as the
first step of a more comprehensive evaluation. The ultimate
goal is to develop a tool to provide recommendations for
developers and evaluate it within real world projects. We have
made the first effort in this direction by asking them via a
survey. Also, the survey results reflect the subjective opinion
of the participants, which may be different from reality. We
used convenience sampling to obtain responses which increase
the risk of bias.

IX. RELATED WORK

Mobile app release planning: Release planning and feature
prioritization is a decision-centric process and part of incre-
mental and iterative software evolution. Release planning and
management of mobile apps were studied. Nayebi et al. [7]
performed a survey with app developers and users and found
that almost half of the developers have a clear strategy for
releasing mobile apps and the strategy impacts the end user.
Villarroel et al. [17] introduced CLAP to assist prioritization
of users’ need using the app reviews. Three app developers
evaluated positive usefulness of CLAP. Xia et al. [19] predicted
crashing releases of mobile apps by in depth analysis of 10
open source applications with total of 2,638 releases. Beside
a successful predictive model, they found that textual data of
commit logs are the best predictors of crashing releases. Also,
Martin et al. [5] analyzed releases which significantly changed
user ratings and performed causal analysis over time.

Release readiness: Release readiness is a composite at-
tribute of software products. In a recent study, AlAlam et
al. [1] found that the definition of release readiness is not
consistent among different publications. Ware et al. [18§]
defined release readiness as the attribute for systems’ stability
and maturity. Port and Wilf [11] related release readiness as
the process of measuring uncertainty about the quality of the
software to evaluate its fitness for distribution. Shahnewaz and
Ruhe [14] also considered release readiness as the readiness of
software to be released at a specific point in time. In contrast
to the previous work, release marketability is solely focused
on the market and customer acceptance using analogy with
former releases.

X. CONCLUSIONS AND FUTURE WORK

Marketability of mobile app releases is a new decision
problem and we showed the practical importance of it. For a
set of open source mobile apps and their releases, we applied
three machine learning techniques to predict marketability of
a release and the results showed the better performance of
Random Forest performed best. For transitioning of a not
successfully marketed release, we used analogical reasoning to
retrieve experience of similar releases and extracted analogical
changes. We internally validated applicability of analogical
reasoning for guiding marketability decision by comparing
analogical changes with actual changes. Moreover, our ex-
ternal evaluation of analogical reasoning with open source
app developers showed the usefulness of this method. While
results look promising but future research is needed to address

some of the discussed threats to validity. Designing a support
tool for more comprehensive empirical evaluation over time
and by developers is of interest. The integration of this tool
with phases of Case-based Reasoning for reusing, adapting
and retaining experience to enhance the reasoning is highly
valuable. In addition, identifying higher level proxies such as
effort and cost to abstract release attributes such as churn or
number of developers will provide tangible insight to plan for
the app evolution.

ACKNOWLEDGEMENT

We like to thank the attendees of RELENG’16 workshop
for their comments on the initial study of this research
and for participating in our survey. Many thanks to the
app developers who helped us evaluating the results. This
research was partially supported by the Natural Sciences and
Engineering Research Council of Canada, NSERC Discovery
Grant 250343-12 and Alberta Innovates Technology Futures.

REFERENCES

[1] S. M. D. Al Alam, M. Nayebi, D. Pfahl, and G. Ruhe. A two-staged
survey on release readiness. In EASE, page To appear. IEEE, 2017.

[2] T. R. Eisenmann. Platform-mediated networks: definitions and core
concepts. In Harvard Business School Module Note 807-049.

[3] E. Guzman and W. Maalej. How do users like this feature? a fine grained
sentiment analysis of app reviews. In RE 2014, pages 153-162. IEEE,
2014.

[4] A. Hindle, D. M. German, and R. Holt. What do large commits tell us?:
a taxonomical study of large commits. In MSR, pages 99-108. ACM,
2008.

[5] W. Martin, F. Sarro, and M. Harman. Causal impact analysis for app
releases in google play. In FSE, pages 435-446. ACM, 2016.

[6] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering. /IEEE Transactions on Software
Engineering, 2016.

[71 M. Nayebi, B. Adams, and G. Ruhe. Release practices for mobile apps—
what do users and developers think? In SANER, 2016, volume 1, pages
552-562. IEEE, 2016.

[8] M. Nayebi, H. Cho, H. Farrahi, and G. Ruhe. App store mining is not
enough. In ICSE. ACM, 2017.

[91 M. Nayebi, H. Farrahi, A. Lee, H. Cho, and G. Ruhe. More insight

from being more focused: analysis of clustered market apps. In WAMA,

pages 30-36. ACM, 2016.

M. Nayebi, H. Farrahi, and G. Ruhe. Analysis of marketed versus not-

marketed mobile app releases. In RELENG 2016, pages 1-4. ACM,

2016.

D. Port and J. Wilf. The value of certifying software release readiness:

an exploratory study of certification for a critical system at jpl. In ESEM,

pages 373-382. IEEE, 2013.

M. M. Richter and R. Weber. Case-based reasoning: a textbook.

Springer Science & Business Media, 2013.

I. Rus and M. Lindvall. Knowledge management in software engineer-

ing. IEEE software, 19(3):26, 2002.

S. Shahnewaz and G. Ruhe. Relrea-an analytical approach for evaluating

release readiness. In SEKE, pages 437—442, 2014.

M. Shepperd. Case-based reasoning and software engineering. In

Managing Software Engineering Knowledge, pages 181-198. Springer,

2003.

[10]

[11]

[12]
[13]
[14]

[15]

[16] T.D. Smedt and W. Daelemans. Pattern for python. Journal of Machine
Learning Research, 13(Jun):2063-2067, 2012.

L. Villarroel, G. Bavota, B. Russo, R. Oliveto, and M. Di Penta. Release
planning of mobile apps based on user reviews. In ICSE, 2016.

M. Ware, F. G. Wilkie, and M. Shapcott. The use of intra-release product
measures in predicting release readiness. In /CST, pages 230-237, 2008.
X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang. Predicting crashing
releases of mobile applications. In ESEM, page 29. ACM, 2016.

[17]
(18]

(19]

